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1. INTRODUCTION 

In split -plot analyses of variance the 
traditional F tests for the treatment and inter- 
action effects demand that the population 
covariance matrices exhibit a specific structure 
(Huynh and Feldt, 1970). When this requirement 
is not fulfilled, some distortion in the level of 
significance may be expected for these tests. 
Greenhouse and Geisser (1958), extending a 
result by Box (1954b), concluded that where the 
covariance matrices for the plots are equal, the 
traditional treatment and interaction mean 
square ratios (MSR) are approximately distrib- 
uted as central F variates with reduced degrees 
of freedom. A correction factor, < 1, evalu- 
ated from the common population covariance 
matrix, may be used to ascertain the degree to 
which this matrix conforms to the required 
structure (e 1 for strict conformity). This 
observation, coupled with the simulation results 
of Collier et al. (1967), indicates that the 
traditional F tests in split -plot designs with 
identical covariance matrix will err on the 
liberal side, e.g., show a size that is larger 
than the nominal alpha. 

In the present paper a theoretical solu- 
tion is obtained for the problem of determining 
Type I error probabilities for the tests of the 
split -plot design. The problem is solved in 
its general form. That is, the sampling dis- 
tributions of the mean square ratios for main 
effects and interaction are derived under any 
arbitrary set of covariance matrices for the 
main plots. This solution, coupled with for- 
mulas derived by Imhof (1962), makes it possible 
to determine the exact size of the traditional 
tests. 

2. DISTRIBUTIONS OF THE RATIOS 

IN THE SPLIT -PLOT DESIGN 

Consider g independent k- component normal 
variates 

(xlj. 
. 

, 
. 

j - 1, 

with mean vectors 

u2j . 

and non -singular covariance matrices Ej which 

need not be equal. Each of the k- components 
(first subscript) corresponds to a level of 
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treatment category A; each of the g populations 
(second subscript) corresponds to a level of 
treatment category B (which is also referred to as 
"group" or "plot "). Thus, the measures under the 
levels of A are related; the measures under the 
levels of B are independent. For each population 
j a random sample of size n. is drawn, whose 

members are denoted by 

(xlJs, 
. xkjs): 

s = 1, 2, The vector X be con- 
ceptualized as the score vector of the sth member 
drawn at random from the jth plot. 

Let n = En. be the total number of cases 
J 

(or observation vectors). The effect of the ith 
treatment of the A category and the interaction 
of the ith treatment with the jth plot are 
respectively - and 

+ The dot (.) notation 

refers to weighted means. The null hypotheses of 
interest are 

HA : = for all i 

HAB: pii - + = 0 for all i, J. 

The sums of squares associated with the 
treatments, the interaction and the residual or 
within error are defined as 

k 
SSA E n(xi.. 

- 
i=1 

k g 
SSAB jElnj(xij 

x.j. + 

SS 
error(w) 

g k nj 

jl[il sl(xijs 
x.js xij + xj.)2]. 

The mean square ratios normally used to test HA 

and are 

MSRA MSA/MSerror(w) 

= (n - g)SSA/SSerror(w) 



MSRAB = MSAB /MSerror(w) 

(n - g)SSAB /(g - 1)SSerror(w) 

To obtain the distribution for MSRA and 

MSRAB, let D = I -11'7k where I denotes an 

appropriate identity matrix and 1 is the vector 

having k components all equal to 1. It may be 

verified that 

(1) k-1 g k-1 
MSRA = (n-g) viXi(1; E E - 1) 

i=1 j=1 i=1 

where the vis are the eigenvalues of 

g 
D E njEj /n, the X..'s are those of matrices 

j =1 

DE., and all of the chi -squares are inde- 

pendent. Moreover, the chi -squares in the 
numerator are central if and only if the 

hypothesis HA is true. 

A particular case of interest is repre- 
sented by the situation in which all the 
covariance matrices E. are equal to E. Then 

g 
E njEj /n = E and X.. = for all j. Hence, 

j =1 

for this case 

(2) k-1 k-1 
MSRA (n-g) E 62)/ E -g) 

i=1 

Consider now two matrices. The first 

matrix, E *, may be formed by g2 submatrices. 
Those on the main "diagonal" are 
E1 . . . , Eg and the others are all 

zero. The second matrix, G, is also formed by 

g2 submatrices. Those on the "diagonal" are 
equal to n. /n)D, < j <.g. The submatrix 

on the ith "row" of the jth "column" is equal 
to -n D /n(1 < i j < g). It may then be 

verified that 

(3) (k- 1)(g -1) g k -1 

MSR 
AB 

. E Y X2 (1; 61)J:1 X -1) AB g -1 i =1 i i 

where the y1's are the positive eigenvalues of 

the matrix E *G and the chi -squares are indepen- 

dent. As before, the non -centrality parameters 
62 are zero if and only if the hypothesis H 

AB 
is true. 

For the particular case in which all the 

covariance matrices E. are equal to E, the 

positive eigenvalues of E *G are the eigenvalues 
(vi ) of DE, each with order of multiplicity 
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(g - 1). Hence, 

(4) k-1 k-1 
MSRAB (n-g) E 61)/(g-1) E v1Xi(n-g). 

i=1 1=1 

Formulas (1), (2), (3), and (4), coupled 
with computational techniques outlined in the 
next sections, make it possible to compute the 
probability that a mean square ratio exceeds the 
critical values of the traditional tests. 

3. COMPUTING THE EIGENVALUES 

The matrices whose eigenvalues govern the 
distribution of the mean square ratio are 
always of the form (I - 11 Let 

B = E and D = I - /k, Then 

(I - 11' = DB Here D and B are 
symmetric and B is positive definite. In the 
present study computation of the eigenvalues was 
performed via the IBM- supplied subroutine 

NROOT (1971). The obtained values are accurate 
up to probably the fifth decimal. This degree 
of accuracy is sufficient for the purposes under 
consideration here. 

4. COMPUTING THE EXACT PROBABILITIES 

The probabilities of the Type I error 
associated with the traditional tests of the 
split -plot design can always be written in the 

form Pr(Q > 0) where Q = all the 

chi -squares being mutually independent. Imhof 
(1962) showed that 

(5) Pr(Q > 0) = 1/2 + sin 6(u) du 
o (u) 

where 6(u) = E [hitan -1(aí}1)] /2 
=1 

p(u) = u2)hi/4 

He also showed that 

lim sin6(u)/up(u) E aihi)/2 
u +0 

and that up(u) increases monotonically toward 
infinity. This allows the numerical integration 
in (5) to be carried out only over the finite 
range 0 < u < U. The upper limit U was set large 
enough so that the error due to the truncated 
interval of integration was sufficiently small. 
All the integrations were performed via the 
Gaussian quadrature with 32 points. In this 
scheme the integrating function was replaced by 
an appropriate polynomial of degree 63, and the 

integration was performed as if the function 
were the polynomial. This method of integration 

was carried out with the IBM subroutine 

DQG32 (1971). It was set in such a way 



Table 1 

Some Population Covariance 

Matrices Used in the Study (k = 5) 

Description Elements* 

A, .388 

Source: computer -simulated 

1.00 
.86 

.96 

.64 

.44 

1.00 

.86 

.88 

.77 

1.00 
.66 

.60 

1.00 

.91 1.00 

B, = .420 1.00 

Source: computed from data in .85 1.00 

Lindquist (1962, page 167) .48 .32 1.00 

.34 .47 .83 1.00 

.83 .71 .88 .76 1.00 

C, = .522 1.00 

Source: fictitious .80 1.00 
.60 .80 1.00 

.40 .60 .80 1.00 

.30 .40 .60 .80 1.00 

D, = .752 1.00 

Source: Wechsler (1958, page .81 1.00 

100, Table 20, Variables: .74 .70 1.00 

Voc., Inf., Sim., BD, OA) .53 .58 .52 1.00 
.43 .45 .39 .61 1.00 

E, e =.831 1.00 

Source: Thurstone and .62 1.00 

Thurstone (1938) .62 .67 1.00 
.54 ..53 .62 1.00 
.29 .38 .48 .62 1.00 

*A11 correlations are rounded to the second decimal. 

that all the reported probabilities were accurate 
up to the last tabulated decimal. 

5. SITUATIONS CONSIDERED IN THE STUDY OF 
TYPE I ERROR 

In the present study the number of 

treatments (A) was set at k = 5, and the num- 
ber of main plots (B) at g = 3. The total num- 
ber of sampling units was set at n = 18 and 33. 
It may be recalled that when the covariance 
matrices are equal, the distributions of the 
mean square ratios do not depend on the plot 
(group) sizes nj per se, but only on their sum, 

n. It is interesting to note that when n 
increases indefinitely, each mean square ratio 
tends stochastically to a linear combination of 
chi -squares. Therefore, it should be expected 
that various probabilities associated with large 
values of n would not vary markedly. 

To simplify the study, only covariance 
matrices with equal variances (1.0 in every 

case) were used in the study. Under this con- 
dition, the traditional tests are valid only 
when the covariances or correlations are equal. 
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Five matrices with heterogeneous correlations 
were considered. These matrices had correction 
factors e = .388, .420, .522, .752, and .831, 
respectively. They are displayed in Table 1. 
In other phases of the study symmetric matrices 
were employed. These matrices, designated Sp 

had homogeneous variances of 1.0 and homogeneous 
correlations indicated by the subscript value. 
Thus, S.30 represents a matrix with variances 

of 1.0 and all correlations equal to .30. 

6. RESULTS FOR THE CASE OF EQUAL 
COVARIANCE MATRICES 

The true probabilities of Type I error, 
computed as described earlier, are presented 
in Table 2. They suggest the following trends: 

(a) The traditional tests always err on the 
liberal side, especially when e and n are small, 
and a = 2.5 or 1 per cent. Increasing the sample 
size leads, in most cases, to a slight reduction 
in the actual probability of Type I error. 

(b) Failure of the common covariance matrix 

to exhibit the required structure has less effect 



Table 2 

Exact Per Cents of Type I Error Associated 
with the Traditional Tests in the Split -Plot 

Design with Equal E 

Matrix n 

A .388 18 

33 

B .420 18 

33 

C .552 18 
33 

D .752 18 

33 

E .831 18 
33 

a( %) for Test of 
Treatment Effect 

10 5 2.5 

14.80 
14.50 
14.13 

10.46 
10.22 
9.97 

7.54 
7.38 
7.20 

14.79 
14.50 
14.36 

10.19 
9.95 

10.12 

7.17 
7.00 
7.29 

13.02 
12.84 
12.58 

8.40 
8.29 
8.15 

5.55 
5.50 
5.43 

11.40 

11.33 
11.18 

6.60 
6.56 
6.50 

3.91 

3.91 
3.90 

10.86 
10.82 
10.70 

6.02 
5.99 
5.96 

3.40 
3.41 
3.41 

a( %) for Test of 
Interaction Effect 

1 10 5 2.5 1 

5.00 16.97 12.08 8.85 5.80 
4.90 16.56 11.77 8.53 5.67 
4.78 16.04 11.42 8.28 5.52 

4.60 16.65 11.60 8.21 5.29 
4.50 16.27 11.29 8.00 5.16 
4.44 15.76 10.95 7.76 5.02 

3.29 14.40 9.35 6.18 3.64 
3.28 14.19 9.22 6.13 3.65 
3.26 13.85 9.05 6.05 3.63 

2.01 12.10 7.04 4.16 2.11 
2.03 12.03 7.00 4.17 2.15 
2.04 11.84 6.95 4.17 2.18 

1.64 11.33 6.30 3.56 1.70 
1.66 11.30 6.29 3.57 1.73 
1.68 11.17 6.26 3.59 1.76 

on the size of the test of HA than on the size of 
the test of 

HAB. 

7. RESULTS FOR THE CASE OF UNEQUAL 
COVARIANCE MATRICES 

Preliminary computation indicated that when 
equality of the covariance matrices does not 
hold, variation in the plot sizes and the range 
of the correlations play a major role. There- 
fore, this part of the study was subdivided into 
three phases. First, in order to assess the 
effect of unequal plot sizes, the covariance 
matrices were restricted to type S (for which 

= 1). Extreme cases were included to dramatize 
this effect. Next were considered matrices with 
wide ranges for the correlations. Finally, 
matrices with moderate ranges of correlations 
and different correction factors were considered. 

(a) Effect of Unequal Plot Sizes. The data 
reported in Table 3 confirm the salutary effect 
of equal plot sizes for the test of interaction. 
Inequality of plot sizes has little effect on 
the test of treatment effects. However, vari- 
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ation in plot sizes may seriously invalidate 
the test of no interaction. The results for the 
test of HA are consistent with those of the Box 

studies (1954a). Box found that, in the case of 
the completely randomized design, inequality of 
variance has little effect on the F test so 
long as the sample sizes are kept equal. 

In view of these results, subsequent 
investigation was made only for the case of 
equal plot size. 

(b) Effect of High Correlations. Exact 

probabilities of Type I error were also :com - 
puted for experiments with matrices involving 
very high correlations. Matrices D, E, and 
S.99 for the three plots was one, such con- 

figuration. In these situations the proba- 
bility of Type I error rose markedly above 
the nominal level, particularly for the 
test of interaction. 

The advantage of the split -plot design 
over the factorial design depends on the 
size of the correlation between measures 
within plots. The higher the correlation, the 



Table 3 

Exact Per Cents of Type I Error Associated with the 

Traditional Tests in the Split -Plot Design with Unequal Ei: 

Effect of Unequal Plot Sizes 

Matrix 
for Plot 

Size 
for Plot 

a( for Test of a(%) for Test of 
Treatment Effect Interaction Effect 

1 2 3 1 2. 3 10 5 2.5 1 10 5 2.5 1 

5.10 5.90 5.90 11 

8 

11 

11 

11 

14 

10.78 
11.78 

5.61 
6.31 

2.95 
3.42 

1.28 
1.53 

13.91 
30.56 

8.60 
22.28 

5.41 
16.35 

2.99 
10.91 

11 14 8 10.78 5.61 2.95 1.28 13.91 8.60 5.42 2.98 

3 15 15 15.15 8.63 4.95 2.39 72.35 64.76 57.82 49.56 

29 2 2 8.56 4.10 1.98 0.75 0.00 0.00 0.00 0.00 

5.30 5.50 5.70 11 11 11 10.11 5.06 2.55 1.03 10.50 5.43 2.84 1.21 

8 11 14 10.36 5.22 2.64 1.07 15.87 9.00 5.12 2.43 

8 14 11 10.22 5.13 2.58 1.04 13.04 7.10 3.90 1.77 

3 15 15 10.62 5.38 2.74 1.12 22.94 24.27 8.86 4.70 
29 2 2 9.33 4.56 2.24 0.88 0.85 0.26 0.09 0.02 

5.40 S.50 S.60 
11 
8 

11 

11 

11 

14 

10.05 

10.1.7 

5.02 
5.09 

2.51 
2.55 

1.01 
1.03 

10.16 
12.66 

5.11 
6.70 

2.58 
3.55 

1.05 
1.54 

14 11 8 9.95 4.95 2.47 0.99 8.05 3.84 1.85 0.71 

3 15 15 10.29 5.16 2.60 1.05 15.59 8.68 4.84 2.22 

29 2 2 9.62 4.74 2.35 0.93 3.18 1.24 0.49 0.15 

smaller the residual error variance, and the 
greater is the power of the test. However, when 
the assumption about covariance matrices is not 
fulfilled (or only approximately so, as in the 
case of the matrices E with .831 and D with 

= .752), high correlations may result in a 
much greater chance of Type I error than would 
be anticipated. 

(c) Effect of Heterogeneity of the 
Correction Factors. The data reported in 
Table 4 reveal that departures from the nominal 
values of a become more serious as the correc- 
tion factors decrease. The effect cannot be 
ignored when < .75. Deviations at a = 10 or 
5 per cent are not intolerably large when all of 
the > .75. Extremely heterogeneous covariance 
matrices (with in the neighborhood of .5 or .4) 

almost completely invalidate the traditional 
tests. 

8. CONCLUDING REMARKS 

Data are presented in this study describing 
the performance of the traditional F tests for 
the split -plot design when nonstandard conditions 
hold for the covariance matrices. In all situa- 
tions under investigation, the test for inter- 
action proved to be more vulnerable than the one 
for treatment effects, especially when the plot 
sizes are not equal. When heterogeneity of 
covariance matrices is suspected, or homogeneity 
appears to hold but < .8 for each matrix, 
multivariate procedures or approximate F tests 
should be considered. These give better control 
of Type I error (Arnold, 1973; Huynh and Feldt, 
1976; Buynh, in press). 
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